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Simple and highly predictive QSAR method: application to a series of
(S)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-methoxybenzamides
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Abstract

A simple quantitative structure–activity relationship (QSAR) method of analysis used to predict biological activity for congeneric series of
compounds is reported. This method is based on the application of bilinear or multilinear partial least squares regression to a data set, which
is a binary matrix representing the substituents of a framework. It is appraised here to a series of (S)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-
6-methoxybenzamides, compounds with affinity towards the dopamine D2 receptor subtype and showed high predictive ability, even when
compared to a refined three-dimensional (3D) approach.
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. Introduction

Quantitative structure–activity relationship (QSAR) anal-
ses are mostly performed by applying methodologies based
n two-dimensional (2D) and three-dimensional (3D) com-
uting approaches to predict biological activities. These have
rovided outstanding results, specially when using the known
oMFA [1], CoMSIA [2] and GRID[3] models to generate
escriptors, in detriment of testing experimentally and some-

imes to predict intuitively which compound could have a par-
icular activity, allowing then to develop new drugs in a faster
nd lesser costly manner[4]. However, such computational
ethods require an exhaustive conformational and alignment

reatment. Accordingly, alternative methods, which provide
apid analysis and results as reliable as the most sophisti-
ated methodologies available today, but which are inexpen-
ive and facile to handle, is of immediate and worldwide
nterest.

Promising attempts to simplify and offer advantages over
D and 3D methods have been emerging[5], as they were
eveloped in the past[6], but obtainment of comparable re-

sults is still an unsolved problem. A QSAR method base
multivariate image analysis developed by us has present
couraging results as a 2D technique[7], and it was an effor
to open precedents in the course of developing new, si
QSAR methods. The present paper is focused on the d
opment of a simple method for QSAR analysis, capab
predict biological activity, or any other parameter, with h
correlation coefficients and good statistics. Two partial l
squares regression methods, namely PLS[8] and N-PLS[9],
were used here to assess the calibration models. Usin
PLS regression method, an unfoldedX-matrix, where eac
row contains the variables (the binary descriptors) descr
each molecule, is decomposed into a score vector (s1) and a
weight vector (w1), ands1 is determined to have the pro
erty of maximum covariance with the dependent variaby.
The scores vectors then replace the original variables a
gressors. Using the multilinear PLS (N-PLS), the unfold
step is not necessary and the decomposition is perform
rectly in the three-way matrix. It was shown that N-PLS
more stable than bilinear PLS, i.e. traditional PLS, sin
is supposed to increase the predictive ability and imp
the interpretation of the results, in 3D QSAR. A detailed
∗ Corresponding author. Tel.: +55 19 3887 9353; fax: +55 19 3887 9889.
E-mail address:jose.martins@ems.com.br (J.A. Martins).

count of N-PLS regression method may be found elsewhere
[9].
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Fig. 1. Structure of (S)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-methoxyben-
zamides (1-58). R2 = H and OH; R3 = H, Me, Et,n-Pr,n-Bu, OMe, SMe,
NO2, F, Cl, Br and I; R5 = H, Me, Et,n-Pr, OMe, NO2, F, Cl and Br.

Our proposed method is appraised in detail here to a
series of (S)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-methoxy-
benzamides (Fig. 1), compounds that possess high affinity
and selectivity towards dopamine D2 receptors, and which
may be used in the treatment of psychiatric disorders, such as
schizophrenia. The results from our modeling are compared
with those from a reported study[10], where a multilinear
PLS algorithm was utilized as the regression method in 3D
QSAR and the GRID program[3] was used for generation of
descriptors. That work rendered notorious results of correla-
tion, and thus is a suitable reference for comparison with our
purpose.

2. Methods

The key to this analysis is to build the matrices. Descri-
ptors for each substituent of (S)-N-[(1-ethyl-2-pyrrolid-
inyl)methyl]-6-methoxybenzamides were built and inserted
in the corresponding position of a template table of 9 rows
by 38 columns. This table reserves the first 10 columns to the
2-position substituent, the next 14 columns to the 3-position
substituent and the remaining 14 columns to the 5-position
substituent, and it may be built by using a Word processor
and the data may then be treated using any appropriate soft-
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3. Results and discussion

A priority needed to perform computer-assisted QSAR
analysis is to calculate descriptors suitable to correlate struc-
tures with the corresponding activities. Three-dimensional
descriptors, which describe non-covalent interactions, are the
ones most usually applied for such purpose. However, their
generation requires previous molecular treatment, such as
conformational screening and ligand alignment. On the other
hand, our proposed methodology avoids this time-consuming
requirement and may be easily performed. Here, the descrip-
tors are a suggestive binary table, where the ones give ori-
gin to the element symbol or group representation, while
the remaining blanks of table are filled out by zeros. Each
molecule of a congeneric series owns a table ofm rows byn
columns, and the columns are divided according to the num-
ber of substituents. As an instance, for a three-substituted
aromatic ring, e.g. 1-chloro-2-nitro-4-methyltio-benzene, a
9× 42 table may be built, whose columns are divided in 3
sets of 14 columns, as illustrated inFig. 2.

A similar procedure is described here to a series of (S)-
N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-methoxybenzamides,
and the provided data are then matricized to two-way and
three-way arrays, in order to run bilinear (PLS) and multi-
linear (N-PLS) partial least squares regression, respectively,
and consequently appraise the predictive ability of the model
b
t with
p r
e

ent
a nts)
i -
p di-
v et of
1
m ree-
w
c d
M e. a

F Note
t e zeros
fi

are (for example, Matlab[11]). The tables correspondi
o the 58 compounds are grouped to form a calibration
f 40× 9× 38 and a test set of 18× 9× 38 (N-PLS model)
hich are subsequently unfolded to form a new calibra
et of 40× 342 and a test set of 18× 342 (PLS model). I
he present analysis, the only data preprocessing appli
ur data was column mean-centering. For the three-wa
ay, the matrix was unfolded, column mean-centered and
ack-folded before regression analysis.

The quality of the calibrations was quantified withR2

nd the external predictions withQ2, the squared correl
ion coefficients of the linear regression of experimental
us predicted pIC50 plots for the calibration and test se
espectively. TheF-statistic andt-test values were also o
ained to evaluate the model quality. The leave-one-out c
alidations were performed with the NIPALS algorithm[12]
nd the minimum cumpress (cumulative predictive resi
rror sum of squares) values were estimated for 5 PLS
-PLS latent variables (LV).
y correlating the fitted and predicted activities (pIC50) with
he corresponding experimental values. Comparison
redictions from literature[10] is also provided to bette
valuate the quality of our model.

A 9 × 38 table (10 columns for the 2-position substitu
nd 14 columns for both the 3- and 5-position substitue

s built analogously toFig. 2 for 58 (S)-N-[(1-ethyl-2
yrrolidinyl)methyl]-6-methoxybenzamides, which were
ided into a calibration set of 40 compounds and a test s
8 compounds, identically as previously reported[10]. Two
odels are considered here: Model 1, consisting of th
ay matrices to run N-PLS, i.e. a 40× 9× 38 matrix for the
alibration set and a 18× 9× 38 matrix for the test set, an
odel 2 consisting of unfolded matrices to run PLS, i.

ig. 2. Table of descriptors for 1-chloro-2-nitro-4-methyltio-benzene.
hat ones designate, as a drawing, element symbols and groups, whil
ll out the blanks.
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Table 1
Aromatic substitution patterns and activities of compounds1-58

Compounds R2 R3 R5 Activity (pIC50) Compounds R2 R3 R5 Activity (pIC50)

Expa Fitted
(PLS/N-
PLS)

Predicted
(PLS/N-
PLS)

Expa Fitted
(PLS/N-
PLS)

Predicted
(PLS/N-
PLS)

1 OH Cl Cl 7.49 7.77/7.76 – 30 OH Br NO2 6.73 6.67/6.78 –
2 OH OMe Cl 7.15 7.13/7.15 – 31 OH I H 8.52 8.05/8.21 –
3 H Br Br 8.10 7.80/7.87 – 32 OH Me Cl 7.59 7.74/7.73 –
4 H Et Br 7.96 8.34/8.48 – 33 OH Me Me 8.11 8.07/7.53 –
5 H I OMe 9.17 9.26/9.28 – 34 OH Et H 8.54 8.16/8.15 –
6 OH n–Pr Me 8.30 8.50/8.34 – 35 OH Et F 8.82 8.52/8.53 –
7 OH Cl n–Pr 6.96 6.80/7.13 – 36 OH Et Cl 9.04 8.42/8.64 –
8 OH H Et 6.91 6.97/7.15 – 37 OH Et Br 8.64 8.52/8.68 –
9 OH I OMe 9.54 9.45/9.49 – 38 OH n–Pr H 8.30 7.84/8.04 –
10 H SMe OMe 8.96 8.50/8.40 – 39 OH OMe H 6.69 6.80/6.66 –
11 OH Et OMe 8.89 9.56/9.43 – 40 OH OMe Br 7.17 7.16/7.20 –
12 H n-Bu OMe 8.57 8.60/8.80 – 41 H Br OH 8.00 – 8.24/8.47
13 H n-Pr H 7.17 7.65/7.84 – 42 OH n-Pr Cl 8.49 – 8.19/8.62
14 H Cl H 6.59 7.25/7.06 – 43 OH Me Br 8.26 – 7.78/7.85
15 H Cl Cl 7.70 7.58/7.55 – 44 H Me OMe 8.28 – 8.63/8.40
16 H Cl Br 8.25 7.61/7.60 – 45 OH Br Et 7.77 – 8.01/8.29
17 H Br H 7.34 7.44/7.33 – 46 OH Et Et 8.75 – 8.54/8.90
18 H Br OMe 8.92 8.84/8.62 – 47 H Et OMe 8.89 – 9.38/9.31
19 H Et Cl 8.38 8.31/8.43 – 48 H H OMe 7.28 – 7.81/7.63
20 OH H Cl 7.19 6.93/6.96 – 49 H Et H 7.40 – 7.99/8.02
21 OH H OMe 8.06 8.00/7.76 – 50 OH H H 6.50 – 6.61/6.56
22 OH F H 6.44 7.13/7.00 – 51 OH H Br 7.25 – 6.97/7.09
23 OH Cl H 7.41 7.44/7.27 – 52 OH Cl Me 7.96 – 8.11/7.65
24 OH Cl Br 7.24 7.80/7.80 – 53 OH Cl OMe 8.77 – 8.85/8.64
25 OH Cl Et 7.92 7.81/7.94 – 54 OH Br F 8.15 – 8.00/8.01
26 OH Br H 8.08 7.63/7.54 – 55 OH Br Me 7.96 – 8.30/7.92
27 OH Br Cl 7.77 7.96/8.03 – 56 OH Me H 7.72 – 7.42/7.32
28 OH Br Br 7.59 7.99/8.07 – 57 OH Me n-Pr 6.85 – 6.78/7.18
29 OH Br OMe 8.85 9.03/8.82 – 58 OH NO2 H 5.52 – 7.03/6.83

a Experimental values are obtained from Ref.[10].

40× 342 matrix for the calibration set and a 18× 342 ma-
trix for the test set. This was done in order to compare the
traditional PLS regression method with the N-PLS approach,
since N-PLS is supposed to demonstrate several advantages
as compared to PLS[10].

The results for calibration and validation are presented in
Table 1and illustrated inFig. 3, where good performances in
prediction are shown for both PLS and N-PLS models. The
predicted pIC50 values ofFig. 3are referred to 5 PLS and 7
N-PLS latent variables, since these presented the minimum
compress values in the leave-one-out cross-validation exper-
iments. In order to show that the relationships did not result
from happenstance and to assure that the calibration was not
a fortuitous correlation, we scrambled the Y-block (the activ-
ities block) and no predictive relationship was found from the
modeling (R2 of 0.42 for 5 PLS LV’s and 0.45 for 7 N-PLS
LV’s), as supposed if we consider that a set of compounds
with no modeling capability is taken. The largest deviation
in prediction, as can easily be seen inFig. 3 (the point cor-
responding to the smallest experimental pIC50), refers to the
compound containing a NO2 group bonded to the 3-position
of the aromatic ring. No compounds with this connectivity
were used in the calibration set, explaining the observed out-

lier result, but it should be born in mind that similar devia-
tions usually occur when any other QSAR model is applied to
predict properties in “non-trained situations”. Also, since this
point corresponds to an extreme value of experimental pIC50,
it is not advisable to belong to an external validation set, but
it was left in to ends of comparison with the literature results
[10] (when including this point into the calibration set, the
predicted values are improved to aQ2 of 0.76 for 5 PLS LV’s
and 0.78 for 7 N-PLS LV’s).Tables 2 and 3show the statis-
tical parameters obtained from calibration and validation, as
well as the correlation results from literature[10]. Our pro-
posed method presented improving effects in many aspects
in comparison with the results from the 3D approach of lit-
erature[10], such as better predictive power using a smaller
number of data. The N-PLS regression method has slightly
improved the predictive ability as compared to the bilinear
PLS for the set of compounds studied here, while the latter
was a bit more parsimonious.

Loadings analysis was performed, by using the chemo-
metric Pirouette 3.11 Software[13], in order to identify im-
portant variables in the PLS model and also to reach some
interpretation of the binary descriptors. Exclusion of vari-
ables with low loadings from the model, according to factor
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Fig. 3. Experimental vs. predicted pIC50 values for (a) PLS model and (b)
N-PLS model.

Fig. 4. Loadings plot, using factor number one for the PLS model.

number one (the factor that retains the most significant vari-
ance in the data—see loadings plot using factor one inFig. 4),
did not improve the calibration quality. However, some inter-
pretability from the weights illustrated inFig. 4may be given
for the calibration set. The last rows of the last columns, con-
sidering the binary tables for each molecule, corresponding
to the last variables in theX-matrix, have a positive effect on
the biological activity when populated by “ones”, e.g. OMe
and SMe substituents at the R5 position. On the other hand,
the first rows, according to factor number one, have small
significance on the biological activities.

Other data sets have been analyzed in our laboratory us-
ing this approach, including a series of potential anxiolytic
agents, which are some 5-HT2C receptor antagonists. For this
series, our cross-validated predictions gave aQ2

CV of 0.60 for
5 PLS LV’s, in agreement with the results reported from a
CoMFA analysis[14], where aQ2

CV of 0.656 for 4 PLS LV’s
was obtained.

Table 2
Statistical parameters of calibration and validation for the QSAR model (using PLS) and literature data

#LV R2a Q2b S.D.ec S.D.pd S.E.ee S.E.pf Fe
g Fp

h tei tpj R2k Q2
CV

l R2l Q2l

1 0.46 0.19 0.59 0.82 0.34 0.62 −5.7 −7.4 85.1 40.9 0.47 0.29 0.44 0.36
2 0.56 0.32 0.53 0.72 0.28 0.48 11.4 −7.4 94.6 46.4 0.59 0.44 0.64 0.45
3 0.68 0.43 0.46 0.67 0.20 0.41 42.6 −0.2 110.0 50.4 0.69 0.52 0.73 0.64
4 0.77 0.62 0.38 0.54 0.14 0.27 91.1 13.4 130.3 62.2 0.75 0.56 0.79 0.56
5 0.82 0.71 0.34 0.47 0.11 0.20 13 2
6 0.83 0.70 0.33 0.48 0.10 0.21 15 2
7 0.84 0.65 0.32 0.52 0.10 0.25 17 7
8 0.85 0.67 0.31 0.51 0.09 0.24 19 3
9 0.86 0.69 0.30 0.49 0.09 0.22 20

10 0.87 0.69 0.29 0.50 0.08 0.22 2
a Squared correlation coefficient of estimate.
b Squared correlation coefficient of prediction.
c Standard deviation of estimate.
d Standard deviation of prediction.
e Standard error of estimate.
f Standard error of prediction.
g F-test value of estimate.
h F-test value of prediction.
i t-Test value of estimate.
j t-Test value of prediction.
k R2 andQ2

CV from literature (Ref.[10]) for model with 26,400 variables.
l R2 andQ2 from literature (Ref.[10]) for model with 2940 variables.
7.5 24.4 147.2 71.3 0.79 0.56 0.81 0.6
4.5 24.7 152.9 70.6 0.81 0.57 0.87 0.6
1.7 17.4 158.5 64.8 0.85 0.56 0.88 0.5
0.2 19.0 164.2 66.4 0.87 0.62 0.90 0.6
6.2 15.7 169.1 68.2 – – 0.91 0.62

21.1 11.7 173.5 67.8 – – 0.92 0.59



186 M.P. Freitas, J.A. Martins / Talanta 67 (2005) 182–186

Table 3
Statistical parameters of calibration and validation for the QSAR model (using N-PLS) and literature data

#LV R2a Q2b S.D.ec S.D.pd S.E.ee S.E.pf Fe
g Fp

h tei tpj R2k Q2
CV

l R2l Q2l

1 0.44 0.20 0.60 0.81 0.35 0.62 −8.7 −7.4 83.6 41.0 0.47 0.29 0.44 0.36
2 0.50 0.28 0.56 0.75 0.31 0.51 1.0 −7.8 88.9 45.0 0.59 0.44 0.64 0.45
3 0.60 0.33 0.50 0.74 0.25 0.50 20.7 −3.6 99.5 45.6 0.69 0.52 0.73 0.64
4 0.70 0.50 0.44 0.62 0.19 0.36 54.0 1.0 115.1 53.8 0.75 0.56 0.79 0.56
5 0.79 0.68 0.37 0.50 0.13 0.22 106.0 15.3 136.0 67.8 0.79 0.56 0.81 0.62
6 0.81 0.76 0.35 0.44 0.12 0.17 132.1 32.6 145.3 77.5 0.81 0.57 0.87 0.62
7 0.84 0.75 0.32 0.43 0.10 0.17 168.5 35.9 157.5 77.1 0.85 0.56 0.88 0.57
8 0.85 0.74 0.31 0.44 0.10 0.18 179.5 28.0 160.9 75.6 0.87 0.62 0.90 0.63
9 0.85 0.75 0.31 0.44 0.09 0.18 186.0 28.3 163.0 76.4 – – 0.91 0.62

10 0.86 0.76 0.30 0.43 0.09 0.17 203.2 32.0 168.2 78.1 – – 0.92 0.59
a Squared correlation coefficient of estimate.
b Squared correlation coefficient of prediction.
c Standard deviation of estimate.
d Standard deviation of prediction.
e Standard error of estimate.
f Standard error of prediction.
g F-test value of estimate.
h F-test value of prediction.
i t-Test value of estimate.
j t-Test value of prediction.
k R2 andQ2

CV from literature (Ref.[10]) for model with 26,400 variables.
l R2 andQ2 from literature (Ref.[10]) for model with 2940 variables.

With this novel appliance, a simple and very accessible
method for QSAR analysis, one can test molecules with dif-
ferent substituents and evaluate which type of them and in
which position they can influence dependent variables. Mod-
els can be built rapidly, depending only on availability of bi-
ological data. We do not have alignment problems, of course,
as using a single binary table instead of 3D descriptors, but
having results as good as those provided from 3D approaches.

4. Conclusions

The proposed QSAR methodology for congeneric series
of compounds allows the construction of much smaller ma-
trices than the usually applied 3D approaches, thus requiring
low computational cost, and provided high predictive abil-
ity for a series of (S)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-
methoxybenzamides, when using both PLS and N-PLS re-
gression methods. Actually, the presented descriptors act as
codes, though they do not have a direct physicochemical
meaning, and were generated here to didactically represent
the substituents, but any plausible and systematic represen-
tation for the substituents should be possible to guarantee
similar modeling capability.
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