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Abstract

A simple quantitative structure—activity relationship (QSAR) method of analysis used to predict biological activity for congeneric series of
compounds is reported. This method is based on the application of bilinear or multilinear partial least squares regression to a data set, whic
is a binary matrix representing the substituents of a framework. It is appraised here to a seBedlgtl-ethyl-2-pyrrolidinyl)methyl]-
6-methoxybenzamides, compounds with affinity towards the dopamimed2ptor subtype and showed high predictive ability, even when
compared to a refined three-dimensional (3D) approach.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction sults is still an unsolved problem. A QSAR method based on
multivariate image analysis developed by us has presented en-
Quantitative structure—activity relationship (QSAR) anal- couraging results as a 2D technidig and it was an effort
yses are mostly performed by applying methodologies basedto open precedents in the course of developing new, simple
on two-dimensional (2D) and three-dimensional (3D) com- QSAR methods. The present paper is focused on the devel-
puting approaches to predict biological activities. These have opment of a simple method for QSAR analysis, capable to
provided outstanding results, specially when using the known predict biological activity, or any other parameter, with high
CoMFA [1], CoMSIA [2] and GRID[3] models to generate  correlation coefficients and good statistics. Two partial least
descriptors, in detriment of testing experimentally and some- squares regression methods, namely fl1&nd N-PLY9],
times to predictintuitively which compound could have a par- were used here to assess the calibration models. Using the
ticular activity, allowing then to develop new drugs in afaster PLS regression method, an unfold&ematrix, where each
and lesser costly manngf]. However, such computational  row contains the variables (the binary descriptors) describing
methods require an exhaustive conformational and alignmenteach molecule, is decomposed into a score vecipiafsl a
treatment. Accordingly, alternative methods, which provide weight vector (w), ands; is determined to have the prop-
rapid analysis and results as reliable as the most sophisti-erty of maximum covariance with the dependent variable
cated methodologies available today, but which are inexpen-The scores vectors then replace the original variables as re-
sive and facile to handle, is of immediate and worldwide gressors. Using the multilinear PLS (N-PLS), the unfolding
interest. step is not necessary and the decomposition is performed di-
Promising attempts to simplify and offer advantages over rectly in the three-way matrix. It was shown that N-PLS is
2D and 3D methods have been emergjbp as they were more stable than bilinear PLS, i.e. traditional PLS, since it
developed in the pa$6], but obtainment of comparable re- is supposed to increase the predictive ability and improve
the interpretation of the results, in 3D QSAR. A detailed ac-
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3. Results and discussion

A priority needed to perform computer-assisted QSAR
analysis is to calculate descriptors suitable to correlate struc-
tures with the corresponding activities. Three-dimensional
descriptors, which describe non-covalent interactions, are the
ones most usually applied for such purpose. However, their
generation requires previous molecular treatment, such as
conformational screening and ligand alignment. On the other
hand, our proposed methodology avoids this time-consuming
requirement and may be easily performed. Here, the descrip-
tors are a suggestive binary table, where the ones give ori-
gin to the element symbol or group representation, while
the remaining blanks of table are filled out by zeros. Each

Fig. 1. Structure of (S)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-methoxyben-
zamides (1-58). R=H and OH; R=H, Me, Et,n-Pr,n-Bu, OMe, SMe,
NO,, F, Cl, Brand I; R =H, Me, Et,n-Pr, OMe, NG, F, Cl and Br.

Our proposed method is appraised in detail here to a
series of (S)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-methoxy-
benzamides (Fig. 1), compounds that possess high afﬁmtymolecule of a congeneric series owns a tablmobws byn
and selectivity towards dopamine, Deceptors, and which L . i

: L columns, and the columns are divided according to the num
may be used in the treatment of psychiatric disorders, such a%er of substituents. As an instance, for a three-substituted
schizophrenia. The results from our modeling are compared o ' L :

aromatic ring, e.g. 1-chloro-2-nitro-4-methyltio-benzene, a

with thosg B rep_qrted studg0], wherc—_z a muIt|I|nefar 9 x 42 table may be built, whose columns are divided in 3
PLS algorithm was utilized as the regression method in 3D . )
sets of 14 columns, as illustratedhig. 2.

QSAR and the GRID prografg] was us_ed for generation of A similar procedure is described here to a series of (S)-
descriptors. That work rendered notorious results of correla- s :
. : . . . N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-methoxybenzamides,
tion, and thus is a suitable reference for comparison with our . -

and the provided data are then matricized to two-way and

PUrpOSE. three-way arrays, in order to run bilinear (PLS) and multi-
linear (N-PLS) partial least squares regression, respectively,
and consequently appraise the predictive ability of the model

2. Methods

by correlating the fitted and predicted activities (gdjowith

the corresponding experimental values. Comparison with
The key to this analysis is to build the matrices. Descri- predictions from literaturd10] is also provided to better

ptors for each substituent of (S)-N-[(1-ethyl-2-pyrrolid- evaluate the quality of our model.

inyl)methyl]-6-methoxybenzamides were built and inserted A 9 x 38 table (10 columns for the 2-position substituent

in the corresponding position of a template table of 9 rows and 14 columns for both the 3- and 5-position substituents)

by 38 columns. This table reserves the first 10 columns to thejs built analogously toFig. 2 for 58 (S)-N-[(1-ethyl-2-

2-position substituent, the next 14 columns to the 3-position pyrrolidinyl)methyl]-6-methoxybenzamides, which were di-

substituent and the remaining 14 columns to the 5-position vided into a calibration set of 40 compounds and a test set of

substituent, and it may be built by using a Word processor 18 compounds, identically as previously repored]. Two

and the data may then be treated using any appropriate softmodels are considered here: Model 1, consisting of three-

ware (for example, MatlafiL1]). The tables corresponding  way matrices to run N-PLS, i.e. a 409 x 38 matrix for the

to the 58 compounds are grouped to form a calibration set calibration set and a 18 9 x 38 matrix for the test set, and

of 40x 9 x 38 and a test set of 189 x 38 (N-PLS model),  Model 2 consisting of unfolded matrices to run PLS, i.e. a
which are subsequently unfolded to form a new calibration

set of 40x 342 and a test set of 28342 (PLS model). In

. . . Cl
the present analysis, the only data preprocessing applied or ON_ L
our data was column mean-centering. For the three-way ar- Tl /
ray, the matrix was unfolded, column mean-centered and then :M

back-folded before regression analysis.

Ry Ry Ry

The quality of the calibrations was quantified wis

and the external predictions wi®?, the squared correla-
tion coefficients of the linear regression of experimental ver-
sus predicted pl§ plots for the calibration and test sets,
respectively. Thd--statistic and-test values were also ob-
tained to evaluate the model quality. The leave-one-out cross-

01110100000000
l0001100000000
l0oo00100000000D0
1l0000100000000D0
10000100000000
l0000100000000
10000100000000
1n0e011000000000
01110100000000

10001011100000
l1001100010000
10101100010000
10101100010000
10101100011111
l10101100010001
10101100011111
io0011100011000
10001011101111

01110100010000
lo0001110110000
1000010101 0000
l0000101010000
01110101010110
pooo1100011001
0o0001100011111
10001100011000
01110100010111

validations were performed with the NIPALS algorithiir2]

and the minimum cumpress (cumulative predictive residual
error sum of squares) values were estimated for 5 PLS and
N-PLS latent variables (LV).

7Fig. 2. Table of descriptors for 1-chloro-2-nitro-4-methyltio-benzene. Note
that ones designate, as a drawing, element symbols and groups, while zeros
fill out the blanks.
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Table 1
Aromatic substitution patterns and activities of compouh8
Compounds R Rs Rs Activity (pIC50) Compounds R R3 Rs Activity (pICso)
Exp? Fitted Predicted Exp? Fitted Predicted
(PLS/N-  (PLSIN- (PLSIN-  (PLSIN-
PLS) PLS) PLS) PLS)

1 OH ClI Cl 7.49 777776 - 30 OH Br NO, 6.73 6.67/6.78 -

2 OH OMe CI 7.15 7.13/7.15 - 31 OH | H 8.52 8.05/8.21 -

3 H Br Br 8.10 7.80/7.87 - 32 OH Me Cl 7.59 7.74]7.73 —

4 H Et Br 7.96 8.34/8.48 - 33 OH Me Me 8.11 8.07/7.53 -

5 H | OMe 917 9.26/9.28 - 34 OH Et H 8.54 8.16/8.15 -

6 OH n-Pr Me 8.30 8.50/8.34 - 35 OH Et F 8.82 8.52/8.53 -

7 OH CI n-Pr  6.96 6.80/7.13 - 36 OH Et Cl 9.04 8.42/8.64 -

8 OH H Et 6.91 6.97/7.15 - 37 OH Et Br 8.64 8.52/8.68 -

9 OH | OMe 9.54 9.45/9.49 - 38 OH n-Pr H 8.30 7.84/8.04 -
10 H SMe OMe 896 8.50/8.40 - 39 OH OMe H 6.69 6.80/6.66 -
11 OH Et OMe 8.89 9.56/9.43 - 40 OH OMe Br 7.17 7.16/7.20 -
12 H n-Bu OMe 8.57 8.60/8.80 - 41 H Br OH 8.00 - 8.24/8.47
13 H n-Pr H 7.17 7.65/7.84 - 42 OH n-Pr Cl 8.49 - 8.19/8.62
14 H Cl H 6.59 7.25/7.06 - 43 OH Me Br 8.26 - 7.78/7.85
15 H Cl Cl 7.70 7.58/7.55 — 44 H Me OMe 828 - 8.63/8.40
16 H Cl Br 8.25 7.61/7.60 - 45 OH Br Et 7.77 - 8.01/8.29
17 H Br H 7.34 7.44]7.33 — 46 OH Et Et 8.75 - 8.54/8.90
18 H Br OMe 892 8.84/8.62 - 47 H Et OMe 889 - 9.38/9.31
19 H Et Cl 8.38 8.31/8.43 - 48 H H OMe 728 - 7.81/7.63
20 OH H Cl 7.19 6.93/6.96 - 49 H Et H 7.40 - 7.99/8.02
21 OH H OMe 8.06 8.00/7.76  — 50 OH H H 6.50 - 6.61/6.56
22 OH F H 6.44 7.13/7.00 - 51 OH H Br 7.25 - 6.97/7.09
23 OH CI H 7.41 7.44[7.27 - 52 OH CI Me 7.96 - 8.11/7.65
24 OH CI Br 7.24 7.80/7.80 - 53 OH CI OMe 8.77 - 8.85/8.64
25 OH CI Et 7.92 7.81/7.94 - 54 OH Br F 8.15 - 8.00/8.01
26 OH Br H 8.08 7.63/7.54 - 55 OH Br Me 7.96 - 8.30/7.92
27 OH Br Cl 7.77 7.96/8.03 - 56 OH Me H 7.72 - 7.42/7.32
28 OH Br Br 7.59 7.99/8.07 — 57 OH Me n-Pr 6.85 - 6.78/7.18
29 OH Br OMe 8.85 9.03/8.82 - 58 OH NO; H 5.52 - 7.03/6.83

a Experimental values are obtained from Ré&D).

40x 342 matrix for the calibration set and a ¥842 ma- lier result, but it should be born in mind that similar devia-
trix for the test set. This was done in order to compare the tions usually occur when any other QSAR model is applied to
traditional PLS regression method with the N-PLS approach, predict properties in “non-trained situations”. Also, since this
since N-PLS is supposed to demonstrate several advantagepoint corresponds to an extreme value of experimentalpIC
as compared to PLRO]. it is not advisable to belong to an external validation set, but
The results for calibration and validation are presented in it was left in to ends of comparison with the literature results
Table land illustrated irig. 3, where good performancesin [10] (when including this point into the calibration set, the
prediction are shown for both PLS and N-PLS models. The predicted values are improved t@& of 0.76 for 5 PLS LV’s
predicted plGp values offig. 3are referredto 5 PLS and 7 and 0.78 for 7 N-PLS LV’s)Tables 2 and 3how the statis-
N-PLS latent variables, since these presented the minimumtical parameters obtained from calibration and validation, as
compress values in the leave-one-out cross-validation experwell as the correlation results from literat|f®]. Our pro-
iments. In order to show that the relationships did not result posed method presented improving effects in many aspects
from happenstance and to assure that the calibration was noin comparison with the results from the 3D approach of lit-
a fortuitous correlation, we scrambled the Y-block (the activ- erature[10], such as better predictive power using a smaller
ities block) and no predictive relationship was found from the number of data. The N-PLS regression method has slightly
modeling (R of 0.42 for 5 PLS LV’s and 0.45 for 7 N-PLS  improved the predictive ability as compared to the bilinear
LV’s), as supposed if we consider that a set of compounds PLS for the set of compounds studied here, while the latter
with no modeling capability is taken. The largest deviation was a bit more parsimonious.
in prediction, as can easily be seerfig. 3 (the point cor- Loadings analysis was performed, by using the chemo-
responding to the smallest experimental gf)Crefers to the metric Pirouette 3.11 Softwaf&3], in order to identify im-
compound containing a N{group bonded to the 3-position  portant variables in the PLS model and also to reach some
of the aromatic ring. No compounds with this connectivity interpretation of the binary descriptors. Exclusion of vari-
were used in the calibration set, explaining the observed out-ables with low loadings from the model, according to factor
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Fig. 4. Loadings plot, using factor number one for the PLS model.

number one (the factor that retains the most significant vari-
ance in the data—see loadings plot using factor ofrégn),

did notimprove the calibration quality. However, some inter-
pretability from the weights illustrated ifig. 4may be given

for the calibration set. The last rows of the last columns, con-
sidering the binary tables for each molecule, corresponding
to the last variables in thé-matrix, have a positive effect on
the biological activity when populated by “ones”, e.g. OMe
and SMe substituents at the Rosition. On the other hand,
the first rows, according to factor number one, have small
significance on the biological activities.

Other data sets have been analyzed in our laboratory us-
ing this approach, including a series of potential anxiolytic
agents, which are some 5-pJreceptor antagonists. For this
series, our cross-validated predictions ga@%@, of 0.60 for
5 PLS LV’s, in agreement with the results reported from a
CoMFA analysi414], where aQ%V of 0.656 for 4 PLS LV's

N-PLS model. was obtained.

Table 2

Statistical parameters of calibration and validation for the QSAR model (using PLS) and literature data

#LV R2a Q% SDe  SDpd SES  SEy Fed Fo" te to) Rk 0 R @?
1 0.46 0.19 0.59 0.82 0.34 0.62 -5.7 -7.4 851 409 0.47 0.29 0.44 0.36
2 0.56 0.32 0.53 0.72 0.28 0.48 114 -74 946 464 0.59 0.44 0.64 0.45
3 0.68 0.43 0.46 0.67 0.20 0.41 426 -0.2 110.0 50 0.69 0.52 0.73 0.64
4 0.77 0.62 0.38 0.54 0.14 0.27 91.1 3 1303 622 0.75 0.56 0.79 0.56
5 0.82 0.71 0.34 0.47 0.11 0.20 1375 24 1472 713 0.79 0.56 0.81 0.62
6 0.83 0.70 0.33 0.48 0.10 0.21 154.5 24 1529 706 0.81 0.57 0.87 0.62
7 0.84 0.65 0.32 0.52 0.10 0.25 171.7 47 1585 648 0.85 0.56 0.88 0.57
8 0.85 0.67 0.31 0.51 0.09 0.24 190.2 09 164.2 664 0.87 0.62 0.90 0.63
9 0.86 0.69 0.30 0.49 0.09 0.22 206.2 J5 169.1 682 - - 091 0.62

10 0.87 0.69 0.29 0.50 0.08 0.22 2211 11 1735 678 - - Q092 0.59

@ Squared correlation coe
b Squared correlation coe

fficient of estimate.
fficient of prediction.

¢ Standard deviation of estimate.

d Standard deviation of pr

ediction.

€ Standard error of estimate.
f Standard error of prediction.

9 F-test value of estimate.

h F-test value of prediction.

i t-Test value of estimate.

I t-Test value of prediction.

kK R? and 02, from literature (Ref[10]) for model with 26,400 variables.

I R% and@? from literature (Ref[10]) for model with 2940 variables.



186 M.P. Freitas, J.A. Martins / Talanta 67 (2005) 182-186

Table 3

Statistical parameters of calibration and validation for the QSAR model (using N-PLS) and literature data

#LV R2a Q% SD  SDp? SES  SEy Fed Fp! te tp) R2k 02,/ R Q?
1 0.44 0.20 0.60 0.81 0.35 0.62 —-8.7 7.4 836 410 0.47 0.29 0.44 0.36
2 0.50 0.28 0.56 0.75 0.31 0.51 1.0 -7.8 889 450 0.59 0.44 0.64 0.45
3 0.60 0.33 0.50 0.74 0.25 0.50 20.7 -3.6 995 456 0.69 0.52 0.73 0.64
4 0.70 0.50 0.44 0.62 0.19 0.36 54.0 .a 115.1 538 0.75 0.56 0.79 0.56
5 0.79 0.68 0.37 0.50 0.13 0.22 106.0 B5 136.0 678 0.79 0.56 0.81 0.62
6 0.81 0.76 0.35 0.44 0.12 0.17 132.1 82 145.3 75 0.81 0.57 0.87 0.62
7 0.84 0.75 0.32 0.43 0.10 0.17 168.5 35 157.5 771 0.85 0.56 0.88 0.57
8 0.85 0.74 0.31 0.44 0.10 0.18 179.5 P8 160.9 756 0.87 0.62 0.90 0.63
9 0.85 0.75 0.31 0.44 0.09 0.18 186.0 28 163.0 764 - - Q91 0.62

10 0.86 0.76 0.30 0.43 0.09 0.17 203.2 .32 168.2 781 - - Q92 0.59

a Squared correlation coefficient of estimate.

b Squared correlation coefficient of prediction.

¢ Standard deviation of estimate.

d Standard deviation of prediction.

€ Standard error of estimate.

f Standard error of prediction.

9 F-test value of estimate.

h F-test value of prediction.

i t-Test value of estimate.

I t-Test value of prediction.

kK R2 and @2, from literature (Ref[10]) for model with 26,400 variables.
I R% and@? from literature (Ref[10]) for model with 2940 variables.
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